
RaITIn: Radar-Based Identification for Tangible Interactions
Tamil Selvan Gunasekaran
themastergts007@gmail.com
The University of Auckland
Auckland, New Zealand

Ryo Hajika
ryo.hajika@auckland.ac.nz
The University of Auckland
Auckland, New Zealand

Yun Suen Pai
pai@kmd.keio.ac.jp

Keio University Graduate School of
Media Design

Yokohama, Japan

Eiji Hayashi
eijihayashi@google.com

Google
Mountain View, California

Mark Billinghurst
mark.billinghurst@auckland.ac.nz

The University of Auckland
Auckland, New Zealand

Focus mode
paperweight

MAK E A
PA P E R
C A S I NG

@ (X, Y)

EXPERIENCE
IN AN APP

A REFLECTOR FOUND!

INTERACTION
SPACE

PAPER
CRAFT

REFLECTIVE
OBJECTWI T H

A LUM INUM
FO I L

RADAR
REFLECTOR

R3

OFF
ON

0

1

1.0

0.0

0.5

S TEP 2 : P L AY IN AN INTERACT ION SPACE !S TEP 1 : ASSEMBL ING OBJECTS

TUI
Toggle
switch

Push
button

Tangible
medium
to learn

Enhance
existing
gaming

experienceSlider

Context Aware Educat ion
/Learning

Enter tainment
& Gaming

b

c d e f

a

Figure 1: RaITIn provides radar based identification for tangible tabletop interaction. It uses a miniaturized radar to identify
unique, low-cost embedded reflectors. (a) Assembling of radar reflector ID’s, (b) The tangible tabletop interaction space, (c)
Tangible User Interface application, (d) Context aware application, (e) Education application, (f) Game application.

ABSTRACT
Radar is primarily used for applications like tracking and large-
scale ranging, and its use for object identification has been rarely
explored. This paper introduces RaITIn, a radar-based identification
(ID) method for tangible interactions. Unlike conventional radar so-
lutions, RaITIn can track and identify objects on a tabletop scale. We
use frequency modulated continuous wave (FMCW) radar sensors
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to classify different objects embedded with low-cost radar reflectors
of varying sizes on a tabletop setup. We also introduce Stackable
IDs, where different objects can be stacked and combined to pro-
duce unique IDs. The result allows RaITIn to accurately identify
visually identical objects embedded with different low-cost reflector
configurations. When combined with a radar’s ability for tracking,
it creates novel tabletop interaction modalities. We discuss possible
applications and areas for future work.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; Interaction devices.
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radar sensing, tabletop system, radar identification, tangible inter-
action
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1 INTRODUCTION
Traditionally radar has been used to detect and track large moving
objects. However, the miniaturisation of radar for consumer devices,
such as smartphones and smart displays has enabled it to be used
for gesture control [7]. Previous research has explored how radar
can be used for ubiquitous human computer interaction, such as
breathing rate sensing [16], gesture input [7, 13], material identi-
fication [27] and object tracking [31]. However, to the best of our
knowledge, there has been little research that explored radar-based
object identification and tracking using custom radar reflectors.

To that end, we present RaITIn, a tangible tabletop system that
uses a miniaturized radar to identify unique, low-cost embedded
reflectors. Unlike conventional tabletop interactions, a radar enables
unique modalities; it is robust, able to penetrate certain material,
and can track objects very accurately. With RaITIn, it can also
identify low-cost reflectors that are embedded within outer casings
within a trackable space with an accuracy of up to 98.96%. This
paper makes the following novel contributions; 1) We introduce
low-cost DIY radar reflectors with unique identification for tangible
input and interactions, 2) We present system design, identification
techniques and software algorithms for identifying different radar
reflectors, and 3) We provide examples of desktop-based interaction
based on radar enabled tangible interactions and applications.

2 RELATEDWORKS
RaITIn extends two areas of prior work; radar-based interactive
sensing and identification, and sensing for tabletop interactivity.
We review related work in each of these areas, and explain the
novelty of our approach.

2.1 Radar-based Interactive Sensing
The recent development of miniature radar sensors like Soli [13]
have enabled radar-based precise motion sensing to be explored for
human computer interaction. For example, Ens et al. [3] showed
how mico-gestures detected by Soli could be combined with large
scale gestures for intuitive input in a gesture based Augmented
Reality interface. Similarly, Wang et al. [22] reviewed a range of
possible micro gestures that can be detected with Soli. These sensors
support micro gestural interactionwith a small footprint, low power
consumption and fewer privacy concerns compared to other gesture
sensing techniques. This makes them suitable for integration into
everyday consumer devices such as Google’s Pixel 4 smartphone1
or the Nest Hub smart display 2.

Research has also been conducted on using radar for material
and object identification. For example, FG LiquID [12] uses radar
to distinguish different liquids at a distance of 40cm, although it

1 https://store.google.com/us/product/pixel_4
2 https://store.google.com/us/product/nest_hub_2nd_gen

requires the objects to remain at a fixed distance. Cubesense [26]
supports radar interactions based on corner reflectors but is not
able to identify different corner reflectors and objects. Yeo et al.
[27, 28] demonstrated the ability to detect and classify different
objects placed on the radar sensor for context-aware and tangible
applications. However, this system can distinguish these materials
only at a constant distance from the sensor and by changes in the
material properties. The closest related work is by McIntosh et
al. [14] that used an array of microwave Doppler sensors beneath
the table. However, this requires a large setup space and multi-
ple antennas which is not practical for everyday use. Arakawa et
al. [1] proposed low cost origami based tangible controllers using
mm wave radar sensor. However, they did not identify the various
controllers. In RaITIn, we use a single 60 GHz radar sensor to iden-
tify custom low-cost radar reflectors on desktop setup for tangible
interaction. Zhao at al. demonstrated identification and tracking
of human participants using point cloud data on millimetre wave
radar[31] . Hsu at al. demonstrated identification using RF reflec-
tions from human participants with high accuracy using 5.46-7.25
GHz FMCW radio[8]. The research detailed in these papers shows
that radar can be used to support human-computer interaction
and object/material identification at a fixed distance[29]. However,
there has been little to no prior research work that uses custom
radar reflectors to identify objects on a tabletop surface where the
object distance with respect to radar sensor changes. Our research
is based on the properties of radar reflectors. Passive radar reflec-
tors are octahedral corner reflectors that reflect radar signals at any
angle towards the source radar. These reflectors are used on boats
to make then identifiable to other boats [30].

In a radar system, the ability to detect a target is dependent upon
its radar cross-section (RCS). The radar cross-section measures the
reflection ability of targets in the radar system. The magnitude of
the RCS is not related to the physical area of corner reflectors. A
specific region, called the effective aperture area, is responsible
for three reflections within three corner reflectors. The amount
of reflected RF energy, or RCS, is proportional to the size of the
effective aperture area. When a trihedral corner reflector of radar is
illuminated at boresight (the symmetry axis), its effective aperture
area is largest, which results in the highest RCS peak. Further details
can be found in these previous works3 [2, 4].

2.2 Sensing approaches for tabletop
interactivity

Our work is informed by prior research related to interactive table-
tops. An interactive tabletop system requires two major technical
elements: (a) identification, and (b) tracking. The Digital Desk is an
early example of an interactive table, using physical metaphors to
interact with digital objects such as documents [24]. A variety of
approaches can be used for unique object identification on a table
top surface. Previous research has used sensors such as cameras
[17, 23, 25] which use computer vision techniques to identify[9],
RFID system using tags [11, 20], NFC [21], capacitive sensing with
tangible markers [18] and even a pressure sensing mat [5, 6]. For
object tracking prior work has explored using cameras [17, 25],

3 https://www.radartutorial.eu/17.bauteile/bt47.en.html

https://doi.org/10.1145/3491101.3519808
https://doi.org/10.1145/3491101.3519808
https://store.google.com/us/product/pixel_4
https://store.google.com/us/product/nest_hub_2nd_gen
https://www.radartutorial.eu/17.bauteile/bt47.en.html


RaITIn: Radar-Based Identification for Tangible Interactions CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA

optical tracking [19], capactive sensing [15, 21], and magnetic sens-
ing [10, 15]. However, these methods have some drawbacks, such
as suffering from occlusion, illumination requirements, relatively
large setup and requiring active tangible objects. In RaITIn, we use
low-cost DIY passive radar reflectors which are easy to make and
do not suffer from any of the above limitations. We use 60 GHz
mmWave radar, which provides accurate tracking and is robust to
environmental changes, making our overall system reliable and
secure.

3 IMPLEMENTATION
In RaITIn, we have developed a low-cost tabletop system using
radar reflectors for input and interaction. This section covers the
system design details, radar reflector design, data collection method,
and machine learning model architecture.

3.1 System Design
We built the prototype of RaITIn using a Soli sensor. Soli is a
Frequency-Modulated Continuous-Wave (FMCW) 5millimeterwave-
length radar that utilizes radio wave at the frequency range from 57
GHz to 63 GHz [13]. The range-bin resolution of the senor is 2.5 cm.
The range bin resolution of radar measures the ability to distinguish
between targets in either range or bearing. We placed a Soli sensor
on top of a table surface at a distance of 40 cm. As marked in Figure
2 (b), the blue space denotes the user interaction space. The cor-
ners of the interaction space are 50 cm from the sensor. Choosing
this distance allows us to detect the majority of radar reflectors,
including smaller ones with a radius of 1 cm in the interaction
space. The sensor configuration determined the interaction space
we used, although the interaction space can be expanded based on
the sensor’s operating frequency and bandwidth. For the current
prototype, we used the C++ - based Soli software development kit
to interface with the sensor and extract Complex range Doppler
(CRD) map data.

3.2 Radar Reflector Design
Radar Reflectors are conventional corner reflectors i.e. those that
tend to reflect majority of the incident waves back towards the
emitter. We designed our custom radar reflectors based on the tradi-
tional passive octahedral radar reflectors used in boats4. However
we modified it into a tetrahedral design because the bottom space
of the octahedral reflectors is hidden from radar view when placing
it on the table. The radar reflectors consist of two main compo-
nents; the reflector itself and an outer case. Using conductive metal
reflectors of various sizes results in a unique, identifiable pattern
from the radar signal. Each reflector is placed in an outer case,
allowing for various external tangible shapes and sizes while still
being identifiable by the radar.

Radar reflectors are made from conductive metals. We 3D print
and assemble each reflector component for our radar reflector de-
sign, covering them with aluminium tape (Figure 3 - a, b). The
thickness of the reflectors is 2 mm, which is less than the wave-
length of the signal. These reflectors are enclosed inside a case
made from 180 grams per square meter (GSM) craft paper to make

4 https://www.ussailing.org/wp-content/uploads/2018/03/2007-Radar-Reflector-Test.
pdf

it tangible for user interactions (3 (c)). Based on prior experimental
trials and research, we found that the paper has excellent trans-
mittance with the highest signal to noise ratio. We tested the 3D
printed outer case with various thicknesses; its material property
adds more noise to the reflected signal from the radar reflectors.
Therefore, we opted for 180 GSM craft paper thick enough to make
it reliable, transparent to the radar and durable.

In the RaITIn prototype, we created 6 custom radar reflectors
with radii of 2 cm, 3 cm, 4 cm, 5 cm, 6 cm, and 7 cm, and enclosed
with cylindersmade from 180 GSMpaper. To create different IDs, we
utilised different cylinder lengths to create new stacking IDs. The
sensor range-bin resolution is 2.5 cm, hence stacking two different
radar reflectors with multiple range-bin lengths creates different
reflected energy and RCS.

In order to detect, track, and identify radar reflectors, we consid-
ered the following reflector design factors: (a) Radar Cross-Section
(RCS), including size and shape, (b) surface smoothness, (c) material,
(d) orientation, (e) distance from the radar, and (f) incident angle of
radio frequency waves. In our system, we create ID’s based on two
factors: (a) varying the RCS of the radar reflectors and (b) stack-
ing two radar reflectors with varying range bin distances between
them.

The equation below denotes received power(Prx ) which is lin-
early proportional to the RCS of the target(σ ) at a fixed distance(R)
with a constant scale factor of transmitted power level (Ptx ), trans-
mitter gain (Gtx ), receiver gain(Grx ), and signal wavelength (λ):

Prx =
Ptx ∗Gtx ∗Grx ∗ σ ∗ λ2

(4 ∗ π )2 ∗ R4

In the line of sight from the radar sensor, the reflector acts as
a circular plate. Other points in the interaction space behave as a
corner reflector. As a general rule, the reflected energy corresponds
to larger RCS as size increases. We use this factor to create different
ID’s. However, a reflector of a particular radius (a) does not have
a constant RCS throughout the interaction space due to distance
and incident angle changes. In our prototype, we used tetrahedral
corner reflectors at any point of the space; this meant that at least
one part of the corner reflector will be visible to the radar. The
tetrahedral corner reflectors’ RCS and reflected energy vary dras-
tically with distance and incident angle. However, the reflected
energy will be unique across reflectors of different sizes at particu-
lar distances and incident angles. We use this phenomenon to ID
reflectors of different sizes across the interaction space. Hence it is
possible to create a machine learning algorithm that filters reflected
energy based on spatial position data and results in identification
of reflectors with different size.

3.3 Signal Processing and Feature Extraction
The main signal obtained from the sensor is the range-Doppler
which allows us to observe three key ID characteristics: (a) energy
intensity of the reflected signal, (b) radial distance and (c) velocity
of the target. We utilised the clutter removal function of the Soli
SDK to remove the noise from the stationary objects on the table.
For machine learning we convert the received range-Doppler data
to range profile data by summing all the Doppler signals across the
range data. The range profile data has the target range information
and reflected energy from the target. The stacked radar reflector’s

https://www.ussailing.org/wp-content/uploads/2018/03/2007-Radar-Reflector-Test.pdf
https://www.ussailing.org/wp-content/uploads/2018/03/2007-Radar-Reflector-Test.pdf
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Figure 2: System design
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Figure 3: (a) Custom 3D printed parts of radar reflectors (b) Aluminium coating over radar reflectors (c)Encasing the reflector
with paper (d) Radar Reflectors of radii 2 cm, 3 cm , 4 cm, 5 cm, 6 cm, 7 cm and stacked radar reflectors radii of 2 cm and 3 cm,
2 cm and 4 cm, 2 cm and 5 cm, 3 cm and 4 cm, 3 cm and 5 cm.

range profile data will have two peaks separated by the range-bin
length compared to the single radar reflector.

The received radar intensity is influenced by the reflection and
transmission properties of thematerial. Reflected signals frommany
points both within and on the object surface are overlapping and
hence contribute to the received signal. The radar signals are stable
and highly discriminative, so we currently use all three channels
from the Soli chip as input range profile data features; each channel
consists of 32 data points, yielding 96 features. We also extracted
globalmaxima, globalminima, standard deviation, rootmean square
and mean for each channel, and the location information of the
reflectors such as range, azimuthal angle and elevation angle as
suggested by Liang et al. [12]. This yields 5 (statistical features) *
3 (channel) + 3 (Location information) = 18 features. In total, we
extracted 114 features for training the model.

3.4 Data Collection
Following the procedure proposed by Yeo et al. [27], we collected
data based on sessions. We restarted the Soli sensor for each session
and waited for three seconds for calibration and clutter removal.
For data collection purposes, we divided the interaction space into
256 small squares with a length of 2.5 cm each. We placed the radar
reflectors on the table at a orientation within the interaction space
in each session and collected the data samples. During each session,
this process was repeated ten times. To avoid repetition, we did
not repeat the same position across sessions. We also collected
background data samples which included no reflectors present and
movement of the hand mimicking an interaction on the tabletop.

To evaluate stacking ID’s, we placed a reflector with radius of
2 cm on top of reflectors with radii of 3 cm, 4 cm and 5 cm with
the difference between the base of the reflectors as 5 cm, i.e. two
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range bins. Additionally, we placed the reflectors with a radius of 3
cm on top of 4 cm and 5 cm reflectors, with the difference between
the bases of the reflectors being 5cm. This decision was made to
evaluate the classifier to differentiate between stacking reflectors
of the same range bin.

In this research, we limited the possibility of stacked ID’s as we
can develop many possible configurations by changing the radius
and multiples of range bin difference between the stacked reflectors,
which we are planning to do in future. In total, we collected data
samples using six unique single reflectors, five stacked reflectors
and background data. Overall, we conducted 290 sessions yielding
290x10x12 (no. of reflectors/class) = 34800 data points for training
set. We collected data from 150 separate sessions (18000 data points)
covering most of the interaction space for both the testing and
development set individually.

3.5 Machine Learning Algorithm
Based on preliminary trials, we found the machine learning model
that gave the best recognition results was the adaboost algorithm
[32] with classifier as decision tree. We trained our adaboost algo-
rithm using the training data and then evaluated the classification
accuracy using data collected from the test session. We used grid
search to obtain the best hyper parameters for the development set.
The model was trained with a learning rate of 0.4 and n_estimators
of 50. We implemented the model using the Scikit-learn5 library
for Python.

4 RESULTS AND DISCUSSION
The conventional 10-fold random holdout cross-validation method
using all samples in the training set yielded an accuracy of 99.17%.
The confusion matrix is shown in figure 4—a, the accuracy of the
testing set yielded 98.96%. Figure 4 - b and c shows the difference
between the energy reflected from the radar reflector of different
sizes versus distance. Based on figure 4 - b, there is a clear distinc-
tion between each reflector’s reflected energy signals across the
distances. However, based on figure 4 - c, the energy reflected by
stacked reflectors was similar. There is minimal difference between
them because the graph shows the highest energy reflected by
the target. The range-Doppler data in the figure 4 - e, f shows the
energy distribution across a range of single and stacked radar re-
flectors. Range-Doppler data obtained from stacked radar reflectors
show differences in range bins among the stacked radar reflectors.
Each configuration of the stacked radar reflector produces a unique
reflected energy distribution. The clear range-bin separation, the
unique reflected energy distribution and spatial position data is the
reason for the high accuracy obtained from the machine learning
model results.

5 INTERACTION DESIGN AND APPLICATION
We implemented the following examples to showcase the applica-
tion opportunities of RaITIn.They demonstrate the wide range of
possible interactions with our tabletop system. Our system is low
cost and has an easy setup, can be used to make any tabletop surface
into an interactive surface. This allows many possible applications
in remote collaboration, learning, creativity/prototyping tools and
5https://scikit-learn.org/stable/

entertainment, and other domains. These application prototypes
were implemented using Python. First, The soli sensor operates
at 32 FPS. Second, The data from the soli sensor are converted to
features as explained in section 3.3. Third, these incoming data is
predicted using the trained machine learning model. Finally, the
inferred class(Or the ID) is sent to the application program, which
was implemented using PyGame6.

TangibleUser Interface We implemented a primary user inter-
face such as a button, toggle switch and slider using our prototype
(Figure 1-c). We designed the button, toggle switch and slider us-
ing origami craftwork. The button uses stacked reflectors. When
the button is pressed, there is a change in the range bin difference
between the two reflectors results in a new ID. The toggle switch
and the slider work on the tracking feature of the radar, and it
records changes in azimuthal and elevation angle to compute the
sliding interaction. This enables many applications in an interactive
desktop scenario, such as controlling the brightness and colour of
LED desk lamps and turning on/off devices.

Context aware applications We implemented context-aware
applications using radar reflector ID (Figure1-d). We assigned each
ID to focus modes found in iOS and Android devices. These focus
modes are Do not disturb, personal, work, reading and sleeping
mode, and help increase task productivity. Placing any ID on the
desktop will control all the other devices in the desk space to be-
have a particular mode. For example, When the user places a radar
reflector corresponding to work mode on the desk, the devices such
as laptops, phones and smart devices give notifications related to
work, such as emails from coworker.

We also implemented another example where we assigned timer
options to IDs. Each ID will have a different time setup. For example,
radar reflectors with a radius of 2 cm will have a timer of 20 seconds.
We can use stackable ID’s to compute more timer options. Placing
these IDs can act as a countdown clock which alerts the user once
the timer is done. This allows tangible interaction of timing similar
to weights in a weighing scale.

Education and Learning application In education and learn-
ing applications (Figure 1-e), we use single IDs and stacked IDs
to teach singular and plural forms of words. We created different
animals and everyday objects using origami, and embedding each
with radar reflectors. We can also use the Stacked ID’s and Sin-
gle ID’s combination to teach mathematics like basic addition and
subtraction to children using the interactive tabletop setup.

Entertainment and Game application We implemented a
generic 2D Pokemon7 fighting game (Figure 1-f) for the deskopwith
RaITIn.We created the animal format of Pokemon using paper-craft.
Each single radar reflector ID represents non evolved Pokemons.
As the players gain experience, they can utilise stacked IDs to rep-
resent the evolution in Pokemon. As the player character evolves,
the character’s energy level declines; hence the player can switch
between the evolution of Pokemon to fight appropriate opponents.
This game was implemented to enhance the gaming experience by
bringing Pokemon’s evolution to tangible physical experience.

6http://www.pygame.org/
7https://www.pokemon.com/us/

https://scikit-learn.org/stable/
http://www.pygame.org/
https://www.pokemon.com/us/


CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Gunasekaran, et al.

BG 100.00%

Classification Accuracy

BG R2 R3 R4 R5 R6 R7
R3
_R
2

R4
_R
2

R5
_R
2

R4
_R
3

R5
_R
3

Predicted class

R2

R3

R4

R5

R6

R7

R3
_R
2

R4
_R
2

R5
_R
2

R4
_R
3

R5
_R
3

Ac
tu
al
cla
ss

100.00%

100.00%

100.00%

100.00%

97.00% 2.50% 0.50%

1.00% 99.00%

1.00% 99.00%

1.00% 98.00% 1.00%

2.00% 98.00%

2.00% 97.00% 1.00%

1.00% 99.00%

R2

R3

R4

R5

R6

R7

Distance(cm)

Re
fle
ct
ed

/
Sc
at
te
re
d

en
er
gy

(d
B)

-50

-45

-40

-35

-30

40 42 44 46 48 50

R3_R2

R4_R2

R5_R2

R4_R3

R5_R3

Distance (cm)

Re
fle
ct
ed

/
Sc
at
te
re
d

en
er
gy

(d
B)

-50

-45

-40

-35

40 42 44 46 48 50

Energy Plot (Single RR) Energy Plot (Double RR)

Amagnitude frame capture
from an RX channel with R3
radar reflector

Amagnitude frame capture
from an RX channel with
R3-R2 radar reflector

b c

d e

a

Figure 4: (a) Confusion matrix - 12 reflectors classes, (b) Reflected energy versus distance of single radar reflectors, (c) Re-
flected energy versus distance of stacked radar reflectors, (d) Absolute range Doppler map of single reflector of radius 3 cm,
(e) Absolute range Doppler map of stacked reflector of radii 2 cm and 3 cm.

6 LIMITATION AND FUTUREWORK
Our system has a number of limitations. Firstly, our system ID’s
only one radar reflector ID at a time in the interaction space. We
want to support multi-object identification and position tracking
in the future. Additionally, our system’s data collection process is
time consuming because we must calibrate the radar reflector ID
across the interaction space. We plan to improve this by developing
a non-linear interpolation for the feature extraction method to ease
the data collection process. We have also not tested all possible
configurations of radar reflectors for Identification. With the im-
proved data collection method, we will provide a comprehensive
testing result for this. In addition to this, like other prior works, our
system has limited interaction space and is sensitive to outer casing
materials. Furthermore, the prototype cannot identify radar reflec-
tor when covered with hand or if the hand is present within the
interaction space. we plan to overcome this limitation by placing
another soli sensor horizontal to the table and train the machine
learning algorithm with the hand’s reflection. Lastly, only the size
of the reflectors were used to differentiate them. Future iterations
can look into other possibilities like material, shape, and so on.

Although our system uses soli radar sensor to built the prototype,
the method to identify custom radar reflectors can be expanded to
all 60 GHz FMCW radar sensor. We envision this system can be
developed using commercially available devices such as Pixel 4 or
Google Nest as a plug-and-play tangible interaction.

7 CONCLUSION
In this paper, we introduce RaITIn, a radar-based identification
method that allows for novel tangible interactions. RaITIn uses cus-
tom DIY radar reflectors embedded into outer cases of any shape.
Each ID is also stacked to create new configurations, allowing vari-
ous tabletop modalities. Our results show an identification accuracy
of 98.96%. The main novel contribution of the system is the use of
60 GHz FMCW radar sensors to classify different objects embed-
ded with low-cost do-it-yourself (DIY) radar reflectors of varying

sizes on a tabletop setup.As miniaturized radars are becoming more
consumer-friendly in the future, we envision RaITIn to be used to
enable new forms of tabletop interaction that are easy to access,
setup and interact with. In order to create this future, our next steps
are developing multi-object identification and position tracking
within the interaction space.
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